BackgroundCD22, mainly expressed in mature B cells, could negatively regulate the function of B cells by binding to sialic acid-positive IgG (SA-IgG). Soluble CD22 (sCD22) is generated by the cleavage of the extracellular domain of CD22 on the membrane surface. However, the role of CD22 in IgA nephropathy (IgAN) remains unknown. MethodsA total of 170 IgAN patients with a mean follow-up of 18 months were included in this study. The sCD22, TGF-β, IL-6 and TNF-α were detected using commercial ELISA kits. SA-IgG were purified to stimulate peripheral blood mononuclear cells (PBMCs) from IgAN patients. ResultsThe plasma levels of sCD22 were lower in IgAN patients in comparison with healthy control. Furthermore, CD22 mRNA levels in PBMCs from patients with IgAN were significantly lower than those of healthy controls. The plasma levels of sCD22 were positively correlated to the mRNA levels of CD22. We found that patients with higher sCD22 levels had a lower level of serum creatinine and a higher level of eGFR on the time of renal biopsy and a higher remission rate of proteinuria and a lower risk of kidney events at the end of follow-up. The logistic regression analysis showed sCD22 was associated with an increased odd of proteinuria remission after being adjusted for eGFR, proteinuria, and SBP. After adjusting for confounding variables, sCD22 was a borderline significant predictor of less kidney composite endpoint. In addition, the sCD22 levels were positively associated with SA-IgG in plasma. The experimental results in vitro showed that addition of SA-IgG enhanced the release of sCD22 in cell supernatant and the phosphorylation of CD22 in PBMCs, further inhibiting the production of IL-6, TNF-α, and TGF-β in cell supernatant in a dose-dependent manner. Pretreatment with CD22-antibody significantly increased the expression of cytokines in PBMCs. ConclusionsThis is the first study to demonstrate that lower plasma soluble CD22 in IgAN patients and high soluble CD22 levels are associated with an increased odd of proteinuria remission and a decreased odd of kidney endpoint. The interaction between CD22 and SA-IgG can inhibit proliferation and inflammation release in PBMCs from IgAN patients.
Read full abstract