Tetracyclines antibiotics (TCs) pose notable environmental challenges due to their persistence in the effluent of wastewater treatment systems. Bioaugmentation offers a promising strategy for their removal, yet information is still very limited. This study aimed to assess the efficacy of bioaugmentation using wild-type (Sphingobacterium sp. WM1) and engineered tetX-carrying (PUC-tetX) strains for enhancing tetracycline (TC) removal in sequencing batch reactors (SBRs). Bioaugmentation mitigated TC's inhibitory effects on denitrification and phosphorus removal processes within SBR systems. Specifically, strain WM1 outperformed strain PUC-tetX in removing TC from sludge and maintained a longer viability. TC addition (500 μg/L, at an environmentally relevant concentration) and bioaugmentation did not significantly impact overall microbial community diversity. Notably, the introduction of these exogenous bacteria markedly increased the abundance of the tetX gene, correlating with the increase in TC degradation. Interestingly, MAGs associated with the Chloroflexi phylum in bioaugmented reactors showed the transfer of the tetX gene to autochthonous bacterial species, promoting TC removal capability. These findings underscored the potential of bioaugmentation to enhance antibiotic removal and provided insights into the dynamics of ARGs and tetX gene within activated sludge systems.
Read full abstract