In this study, we aimed to investigate the testicular toxicity of two molecules derived from bee venom (BV): phospholipase A2 (PlA2) and melittin (Mlt). Ultrastructural effects of purified BV PlA2 and Mlt were assessed consecutive to repeated dose (30 days) and acute toxicity studies. For the subchronic treatment, PlA2 and Mlt were injected in daily doses equivalent to those released by a bee sting (105 μg PlA2/kg/day and 350 μg Mlt/kg/day), while in the acute treatment their doses corresponded to those released by 100 bee stings (9.3 mg PlA2/kg and 31 mg Mlt/kg). Both PlA2 and Mlt affected the Leydig cells and the cells in seminiferous tubules, the Sertoli cells first of all. PlA2 injection resulted in detachment of the Sertoli cells from the surrounding cells, and extracellular vacuolations, cytoplasmic vacuolations in their basal region and in branches as well, detachment of spermatids, residual bodies and sometimes even spermatocytes into the lumen, changes that had a higher magnitude after the acute treatment. Mlt injection induced similar ultrastructural alterations, but more severe, including degeneration of cellular organelles and cellular necrosis, resulting into rarefaction of the seminiferous epithelium; the ultrastructural changes had a higher magnitude after the 30 repeated dose treatment. We concluded that either of the two molecules tested here, PlA2 and Mlt, were Sertoli cells toxicants at the used doses, and they participated both in the BV testicular toxicity. We consider the observed changes as part of a preceding mechanism of the more severe alterations produced by the BV. It also remains possible that these early unspecific changes reported here could represent the response of the SCs not only to the components of bee venom, but to molecules of other venoms as well. The Sertoli cells were the primary target of PlA2 and Mlt in the spermatogenic epithelium, and their alteration led to further degenerative changes of the germ cells. Since the exposure to PlA2 and Mlt caused severe alteration, including cell death and detachment of immature germ cells into the lumen, we may also conclude that the bee venom molecules had a potential to interfere with normal progression of spermatogenesis. All the degenerative changes observed in the Sertoli cells were accompanied with changes of the Leydig cells.