ABSTRACTThe synthesis and unique optoelectronic features of a π‐conjugated polymer containing both thiophene and 1‐phenylphosphole sulfide units (multiple heteroles) in the main chain by the post‐element transformation of a regioregular organometallic polymer possessing titanacyclopentadiene‐2,5‐diyl unit are described. The π‐conjugated polymer containing multiple heteroles was obtained in 73% yield by the simultaneous reaction of the organotitanium polymer with sulfur monochloride and dichlorophenylphosphine (0.6 equiv each), whose number‐average molecular weight (Mn) and the molecular‐weight distribution (Mw/Mn) were estimated to be 11,000 and 3.4, respectively, by the size exclusion chromatography (SEC). The π‐conjugated polymer thus obtained was found to have the high HOMO and the low LUMO energy levels due to the electron‐rich thiophene and electron‐deficient phosphole sulfide units, respectively, as supported by its cyclic voltammetry (CV) analysis. Compared to a mixture of a polymer containing sole thiophene‐unit and that containing sole phosphole sulfide units, the π‐conjugated polymer‐containing multiple heteroles proved to exhibit interesting optical properties. For example, a specific emission peak was observed at 608 nm in the photoluminescence spectrum, which was not observed in the case of the thiophene‐containing polymer, the phosphole‐containing polymer, and their mixture. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2519–2525