Objective:Obese girls with polycystic ovarian syndrome (PCOS) have decreased insulin sensitivity (IS), muscle mitochondrial dysfunction and increased liver fat, which may contribute to their increased risk for type 2 diabetes. Less is known regarding normal-weight girls with PCOS.Methods:Normal-weight girls with PCOS [n =18, age 15.9 ± 1.8 years, body mass index (BMI) percentile 68 ± 18] and normal-weight controls (NWC; n = 20; age 15.0 ± 2.1 years, BMI percentile 60 ± 21) were studied. Tissue-specific IS was assessed with a four-phase hyperinsulinemic-euglycemic clamp with isotope tracers and a 2-hour oral glucose tolerance test (OGTT). Hepatic fat was determined using magnetic resonance imaging. Postexercise muscle mitochondrial function was assessed with 31P MR spectroscopy.Results:Both groups had similar demographics, anthropomorphics, physical attributes, habitual physical activity levels and fasting laboratory values, except for increased total testosterone and DHEAS in PCOS. Clamp-assessed peripheral IS was lower in PCOS (10.4 ± 2.4 mg/kg/min vs 12.7 ± 2.1; P = 0.024). The 120-minute OGTT insulin and glucose concentrations were higher in PCOS (114 IU/mL ± 26 vs 41 ± 25, P = <0.001 and 119 ± 22 mg/dL vs 85 ± 23, P = 0.01, respectively). Muscle mitochondrial ADP and phosphocreatine time constants were slower in PCOS. Despite a higher percentage liver fat in PCOS, hepatic IS was similar between groups, as was adipose IS.Conclusions:Normal-weight girls with PCOS have decreased peripheral IS and muscle mitochondrial dysfunction, abnormal glucose disposal, relative postprandial hyperinsulinemia, and increased hepatic fat compared to NWC. Despite a normal BMI, multiple aspects of metabolism appear altered in normal-weight girls with PCOS.
Read full abstract