In the present study, the dissolution and microstructural transformation of CeO2 nanoparticles (NPs) in a phosphate-containing milieu were investigated. The dissolution behaviour of 2 nm and 5 nm CeO2 NPs in phosphate buffer solutions was found to differ markedly from that observed in 0.01 M NaClO4. Through synchrotron X-ray diffraction analysis and X-ray absorption spectroscopy, the interaction between CeO2 NPs and phosphate species was examined, revealing the transformation of the oxide into sodium-cerium double phosphate, with cerium predominantly existing in the Ce(IV) state. According to scanning and transmission electron microscopy observations, thus formed Na-Ce(IV) phosphate consists of spindle-like aggregates of nanocrystalline rods, presumably formed during phosphate anions sorption on the initial CeO2 surface. Pair distribution function analysis revealed that Na-Ce(IV) phosphate has a three-dimensional framework crystal structure, similar to NaTh2(PO4)3, as reported earlier, with large channels along the c-axis containing disordered sodium atoms. This study represents the first detailed analysis of phosphate-induced speciation and microstructural transformation of CeO2 NPs, resulting in the formation of Ce(IV) phosphate. Similar processes may occur in natural ecosystems upon the introduction of CeO2 NPs.
Read full abstract