Sensory adaptation has been measured in the antennae of male Grapholita molesta (Busck) after 15 min of exposure to its main pheromone compound (Z)-8-dodecen-1-yl acetate (Z8-12:OAc) at the aerial concentration of 1 ng/m(3) measured in orchards treated with pheromone for mating disruption. Exposing males to this aerial concentration of Z8-12:OAc for 15 min, however, had only a small effect on their ability to orientate by flight to virgin calling females in a flight tunnel. Experiments were undertaken to determine if exposure to the main pheromone compound in combination with the two biologically active minor compounds of this species, (E)-8-dodecen-1-yl acetate (E8-12:OAc) and (Z)-8-dodecen-1-ol (Z8-12:OH) would induce greater levels of sensory adaptation and have a greater effect on male sexual behavior. The exposure of male antennae to 0.5 g/m(3) air of one of the three pheromone compounds induced sensory adaptation to this compound and to the other two pheromone compounds demonstrating cross adaptation. Average percentage sensory adaptation to a pheromone compound was similar after 15 min of exposure to 1 ng/m(3) air of Z8-12:OAc, or to 1 ng/m(3) air of a 1:1:1 or 93:6:1 blend of Z8-12:OAc, E8-12:OAc, and Z8-12:OH. The exposure of males to 1 ng/m(3) air of Z8-12:OAc or the two ratios of Z8-12:OAc, E8-12:OAc, and Z8-12:OH for 15 min had no effect on their ability to orientate to a virgin calling female. The implications of these results for the operative mechanisms of sex pheromone-mediated mating disruption of this species are discussed.
Read full abstract