The gas-liquid membrane contactor (GLMC) is a promising alternative gas absorption/desorption configuration for effective carbon dioxide (CO2 ) capture. The physicochemical properties of membranes may synergistically affect GLMC performances, especially during the long-term operations. In this work, commercial polypropylene (PP) and polyvinylidene fluoride (PVDF) hollow fiber (HF) membranes were applied to explore the effects of their physicochemical properties on long-term CO2 absorption performances in a bench-scale GLMC rig. PP membranes with pore size of 19 nm, thickness of 0.046 mm, and porosity of 58% achieved high CO2 flux when feeding pure CO2 (5.4 and 24.4×10-3 mol/m2 .s using absorbents of water and 1M monoethanolamine (MEA), respectively) whereas PVDF membranes with pore size of 24 nm, thickness of 0.343 mm, and porosity of 84% presented a good CO2 separation performance from the simulated biogas using 1M MEA (6.8×10-3 mol/m2 .s and 99.9% CH4 recovery). When using water as absorbent, the coupled phenomena of membrane wetting and fouling restricted CO2 transport and resulted in continuous flux loss during the long-term operations. When using MEA as absorbent, both PP and PVDF membranes suffered dramatic flux decline. A series of membrane characterization tests revealed that the morphology, pore size, hydrophobicity, and stability of selected commercial membranes were greatly affected by MEA attack during long-term operations. Therefore, the selection criterion of microporous membranes for high-efficiency and long-term stable CO2 absorption in GLMC processes was proposed. It is envisioned that this study can shed light on improving existing membrane fabrication procedures and the application of novel membrane surface modification techniques to facilitate practical applications of the GLMC technology.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access