Secondary fermentation in beer can result in undesirable consequences, such as off-flavors, increased alcohol content, hyperattenuation, gushing, and the spontaneous explosion of packaging. Strains of Saccharomyces cerevisiae var. diastaticus are a major contributor to such spoilage due to their production of extracellular glucoamylase enzyme encoded by the STA1 gene. Saccharomyces yeasts can naturally produce antifungal proteins named "killer" toxins that inhibit the growth of competing yeasts. Challenging diastatic yeasts with killer toxins revealed that 91% of strains are susceptible to the K1 killer toxin produced by S. cerevisiae. Screening of 192 killer yeasts identified novel K2 toxins that could inhibit all K1-resistant diastatic yeasts. Variant K2 killer toxins were more potent than the K1 and K2 toxins, inhibiting 95% of diastatic yeast strains tested. Brewing trials demonstrated that adding killer yeast during a simulated diastatic contamination event could prevent hyperattenuation. Currently, most craft breweries can only safeguard against diastatic yeast contamination by good hygiene and monitoring for the presence of diastatic yeasts. The detection of diastatic yeasts will often lead to the destruction of contaminated products and the aggressive decontamination of brewing facilities. Using killer yeasts in brewing offers an approach to safeguard against product loss and potentially remediate contaminated beer.IMPORTANCEThe rise of craft brewing means that more domestic beer in the marketplace is being produced in facilities lacking the means for pasteurization, which increases the risk of microbial spoilage. The most damaging spoilage yeasts are "diastatic" strains of Saccharomyces cerevisiae that cause increased fermentation (hyperattenuation), resulting in unpalatable flavors such as phenolic off-flavor, as well as over-carbonation that can cause exploding packaging. In the absence of a pasteurizer, there are no methods available that would avert the loss of beer due to contamination by diastatic yeasts. This manuscript has found that diastatic yeasts are sensitive to antifungal proteins named "killer toxins" produced by Saccharomyces yeasts, and in industrial-scale fermentation trials, killer yeasts can remediate diastatic yeast contamination. Using killer toxins to prevent diastatic contamination is a unique and innovative approach that could prevent lost revenue to yeast spoilage and save many breweries the time and cost of purchasing and installing a pasteurizer.
Read full abstract