Tungsten (W), a widely used yet understudied emerging contaminant, forms oxyanions in aqueous environments, distinguishing it from conventional heavy metals. While dissolved organic matter (DOM) demonstrates considerable potential for W binding, DOM-W interactions remain largely unexplored. Of particular significance, yet frequently overlooked, are the conformational changes in DOM during W binding processes. This study proposes a novel theoretical framework integrating superposition and charge transfer models to elucidate the complexity of these interactions. By combining spectroscopic techniques and photophysical models, we revealed that aromatic compounds containing 1–3 rings, especially monocyclic aromatic protein-like components, exhibit high affinity for W (logK=3.74–4.00). Phenolic hydroxyls served as primary binding sites for W, with aromatic rings facilitating binding through π interactions. Importantly, W binding to aromatic compounds induced conformational changes in DOM, transitioning from a loosely aggregated state to a more compact configuration. These changes facilitated W encapsulation within DOM through the synergistic effects of hydrophobic interactions, hydrogen/π-hydrogen bonding and π-stacking, potentially leading to stable trapping of W. Two-dimensional correlation spectroscopy analysis elucidated the sequential encapsulation process, involving phenolic, aromatic carboxylic/aliphatic carboxylic, polysaccharides, and aliphatics. The intricate behavior of DOM-W binding profoundly reshapes DOM's conformation, subtly yet significantly orchestrating W's binding affinity, environmental transport, and bioavailability in aquatic ecosystems.
Read full abstract