Improvements of a method for measurement of continuous displacements and deformations with digital phase shifting speckle pattern interferometry are presented. The method is based on an algorithm that, with the knowledge of the initial phase, only needs one image at a time to evaluate continuos phase changes due to object deformations. In the improved method, the initial random phase of the speckle pattern is evaluated using a number of phase-shifted images before the deformation under study. This is used for increasing the accuracy of the initial phase estimation and reducing influences from image noise and other measurement disturbances. The phase-shifted speckle patterns are used as references for comparison with the speckle patterns of the deformed object, thereby increasing the reliability and accuracy of the phase estimations of the deformed patterns. The technique can be used for measuring deformations such as transients and other dynamic events, heat expansion as well as other phenomena where it is difficult to accomplish phase shifting during deformation.
Read full abstract