Ferroelectricity has been separately found in numerous solid and liquid crystal materials since its first discovery in 1920. However, a single material with biferroelectricity existing in both solid and liquid crystal phases is very rare, and the regulation of biferroelectricity has never been studied. Here, solid-liquid crystal biphasic ferroelectrics, cholestanyl 4-X-benzoate (4X-CB, X = Cl, Br, and I), which exhibits biferroelectricity in both the solid and liquid crystal phases, is presented. It is noted that the ferroelectric liquid crystal phase of 4X-CB is a cholesteric one, distinct from the ordinary chiral smectic ferroelectric liquid crystal phase. Moreover, 4X-CB shows solid-solid and solid-liquid crystal phase transitions, of which the transition temperatures gradually increase from Cl to Br to I substitution. The spontaneous polarization (Ps ) of 4X-CB in both solid and liquid crystal phases can also be regulated by different halogen substitutions, where the 4Br-CB has the optimal Ps because of the larger molecular dipole moment. To the authors' knowledge, 4X-CB is the first ferroelectric with tunable biferroelectricity, which offers a feasible case for the performance optimization of solid-liquid crystal biphasic ferroelectrics.