In order to investigate the behavior of gravitational signals while travelling through a medium an experiment was designed, aimed at measuring the speed of these signals over short distances. The experiment contains 2 sapphire devices that behave as a detector, which are suspended in vacuum and cooled down to 4.2 K. The amplitude of the detecting device is measured by an ultralow, phase-noise microwave signal that uses resonance in the whispering gallery modes. Since sapphire has a quite high mechanical Q, the detection band is expected to be small, thus reducing the detection sensitivity. A new shape for the detecting device is presented in this work, yielding a detection band of several hundred Hertz. With the aid of a Finite Element Program the normal mode frequencies of the detector are determined.