We studied the structure and attachment modes of the teeth of adult Anoplogaster cornuta using light- and scanning-electron microscopic techniques. All teeth were monocuspid, composed solely of orthodentin, and lacked a covering enameloid cap. Fourteen teeth were present in the oral jaws, with three teeth each on the left and right premaxilla and four teeth each on the left and right dentary. The anteriormost premaxillary and dentary teeth were considerably larger than the more posteriorly located ones. The oral jaw teeth were transparent, non-depressible and firmly ankylosed to their respective dentigerous bone by a largely anosteocytic bone of attachment. No evidence for replacement of the large oral jaw teeth was found in the analyzed adult specimens. The bone of attachment exhibited lower calcium and phosphorus concentrations and a higher Ca/P ratio than the orthodentin. The connection between dentinal tooth shaft and bone of attachment was stabilized by a collar of mineralized collagen fibers. In contrast to the oral jaw teeth, the pharyngeal teeth exhibited a ring-like fibrous attachment to their supporting bones. This mode of attachment provides the teeth with some lateral mobility and allows their depression relative to their supporting bones, which may facilitate intra-pharyngeal prey transport. In contrast, a firm ankylosis was observed in numerous small teeth located on the branchial arches. The function of these teeth is presumably to increase the tightness of the pharyngeal basket and thereby the retention of small prey items in a species living in a habitat with only sparse food supply. Our findings corroborate earlier statements on the tooth attachment modes of the oral jaw teeth of Anoplogaster cornuta, but provide new findings for the attachment modes of pharyngeal teeth in this species.