Aqueous zinc ion batteries (AZIBs) stand out from the crowd of energy storage equipment for their superior energy density, enhanced safety features, and affordability. However, the notorious side reaction in the zinc anode and the dissolution of the cathode materials led to poor cycling stability has hindered their further development. Herein, ammonium salicylate (AS) is a bidirectional electrolyte additive to promote prolonged stable cycles in AZIBs. NH4 + and C6H4OHCOO- collaboratively stabilize the pH at the interface of the electrolyte/electrode and guide the homogeneous deposition of Zn2+ at the zinc anode. The higher adsorption energy of NH4 + compared to H2O on the Zn (002) crystal plane mitigates the side reactions on the anode surface. Moreover, NH4 + is similarly adsorbed on the cathode surface, maintaining the stability of the electrode. C6H4OHCOO- and Zn2+ are co-intercalation/deintercalation during the cycling process, contributing to the higher electrochemical performance of the full cell. As a result, with the presence of AS additive, the Zn//Zn symmetric cells achieved 700h of highly reversible cycling at 5mA cm-2. In addition, the assembled NH4V4O10(NVO)//Zn coin and pouch batteries achieved higher capacity and higher cycle lifetime, demonstrating the practicality of the AS electrolyte additive.