This study addresses the morphological and chemical characterization of PGS scaffolds after (6, 12, 18, 24, and 30 min) residence in undoped pyrrole plasma (PGS-PPy) and the evaluation of cell viability with human dental pulp stem cells (hDPSCs). The results were compared with a previous study that used iodine-doped pyrrole (PGS-PPy/I). Analyses through SEM and AFM revealed alterations in the topography and quantity of deposited PPy particles. FTIR spectra of PGS-PPy scaffolds confirmed the presence of characteristic absorption peaks of PPy, with higher intensities observed in the nitrile and -C≡C- groups compared to PGS-PPy/I scaffolds, while raman spectra indicated a lower presence of polaron N+ groups. On the other hand, PGS scaffolds modified with PPy exhibited lower cytotoxicity compared to PGS-PPy/I scaffolds, as evidenced by the Live/Dead assay. Furthermore, the PGS-PPy scaffolds at 6 and 12 min, and particularly the PGS-PPy/I scaffold at 6 min, showed the best results in terms of cell viability by the fifth day of culture. The findings of this study suggest that undoped pyrrole plasma modification for short durations could also be a viable option to enhance the interaction with hDPSCs, especially when the treatment times range between 6 min and 12 min.
Read full abstract