Deep Understanding of Technical Documents (DUTD) has become a very attractive field with great potential due to large amounts of accumulated documents and the valuable knowledge contained in them. In addition, the holistic understanding of technical documents depends on the accurate analysis of its particular modalities, such as graphics, tables, diagrams, text, etc. and their associations. In this paper, we introduce the Kyrtos methodology for the automatic recognition and analysis of charts with curves in graphics images of technical documents. The recognition processing part adopts a clustering based approach to recognize middle-points that delimit the line-segments that construct the illustrated curves. The analysis processing part parses the extracted line-segments of curves to capture behavioral features such as direction, trend and etc. These associations assist the conversion of recognized segments’ relations into attributed graphs, for the preservation of the curves’ structural characteristics. The graph relations are also are expressed into natural language (NL) text sentences, enriching the document’s text and facilitating their conversion into Stochastic Petri-net (SPN) graphs, which depict the internal functionality represented in the chart image. Extensive evaluation results demonstrate the accuracy of Kyrtos’ recognition and analysis methods by measuring the structural similarity between input chart curves and the approximations generated by Kyrtos for charts with multiple functions.
Read full abstract