The enormous accumulation of poly(ethylene terephthalate) (PET) waste has posed a serious threat to the environment and human health, and biodegradation with PET hydrolase (PETase) can be a possible solution. Herein, we propose site-specifically modifying PETase with amphiphilic polymers to improve the enzyme performance at ambient temperature. For this purpose, we devise a computer-aided strategy to prioritize the conjugation site, and polyethylene glycol (PEG) preparations of 0.55 to 10 kDa are site-specifically conjugated to PETase. The most active conjugate PETase-PEG 5k (PETase-5K) shows an increase of melting temperature (3.88 °C) and significantly improves PET degradation performance (3.5- and 3.1-fold increases at 30 and 40 °C, respectively). Experimental investigation and molecular dynamics simulations reveal that the site-specific PEGylation increases the hydrophobic solvent-accessible surface area and the binding capability to the PET surface, thickens the hydration layer, increases the intramolecular hydrogen bonding, reduces the interactions between water and the conjugated enzyme surface, and rigidifies the enzyme structure via hydrogen bonding and hydrophobic interactions between the polymer and the enzyme, thus leading to improved enzymatic performance of PETase-5K. We further validate the versatility of the site-specific PEGylation in one of the most evolved variants of PETase, FAST-PETase, by 1.8-fold improvement in PET degradation at 30 °C. The presented computer-aided site-specific conjugation strategy has opened a new avenue to enhancing PETase performance at ambient temperature, and the contribution of PEGylation to PETase unraveled in this work laid a foundation for the rational engineering of PET hydrolases.