Atomically dispersed catalysts anchored on nitrogen-rich substrates present promising application potential for the persulfate-based advanced oxidation process. Nevertheless, efficient activation efficiency and a clear activated mechanism of persulfate remain challenging in carbon nitride-based single-atom catalysts (SACs). To these, combined with the regulation strategy of metal-ligand section and carrier's architecture, an atomically dispersed Co single-atom catalyst anchored on regular hollow tubular carbon nitride (Co/TCN SAC) herein was devised and utilized to activate permonosulfate. As a result, Co/TCN SACs show excellent catalytic performance for the degradation of common antibiotics. Combined with X-ray absorption fine structure and theory calculation, it is confirmed that superficially anchored CoO3 sites of the Co2N2O2-CoO3 unit are the catalytic active center for peroxymonosulfate (PMS) activation. The electrochemical test and in situ electron paramagnetic resonance results demonstrate radical (SO4•- and •OH) and nonradical (electron transfer process and 1O2) paths contributing to the superior catalytic performance. In addition, the catalyst exhibits high reaction efficiency and structural stability considering water quality parameters. Finally, a continuous and efficient device was operated on a laboratory scale, which exhibited satisfactory efficiency in continuously removing electron-rich antibiotics such as tetracycline. This work reveals the atomic-level modulation of cobalt atomic sites on hollow tubular carbon nitride and their structure-activity relationship with persulfate activation.