E-commerce recommender systems (RS) nowadays are essential for promoting products. These systems are expected to offer personalized recommendations for users based on the user preference. This can be achieved by employing cutting-edge technology such as artificial intelligence (AI) and machine learning (ML). Tailored recommendations for users can boost user experience in using the application and hence increase income as well as the reputation of a company. The purpose of this study is to investigate popular ML methods for e-commerce recommendation and study the potential of ensemble methods to combine the strengths of individual approaches. These recommendations are derived from a multitude of factors, including users' prior purchases, browsing history, demographic information, and others. To forecast the interests and preferences of users, several techniques are chosen to be investigated in this study, which include Singular Value Decomposition (SVD), k-Nearest Neighbor Baseline (KNN Baseline) and CoClustering. In addition, several evaluation metrics including the fraction of concordant pairs (FCP), mean absolute error (MAE), root mean square error (RMSE) and normalized discounted cumulative gain (NDCG) will be used to assess how well different techniques work. To provide a better understanding, the outcomes produced in this study will be incorporated into a graphical user interface (GUI).
Read full abstract