Persistent foot odor and itchiness are common symptoms of tinea pedis, significantly disrupting the daily life of those affected. The cuticular barrier at the site of the tinea pedis is thickened, which impedes the effective penetration of antifungal agents. Additionally, fungi can migrate from the skin surface to deeper tissues, posing challenges in the current clinical treatment for tinea pedis. To effectively treat tinea pedis, we developed a platform of bilayer gelatin methacrylate (GelMA) microneedles (MNs) loaded with salicylic acid (SA) and FK13-a1 (SA/FK13-a1@GelMA MNs). SA/FK13-a1@GelMA MNs exhibit pH- and matrix metalloproteinase (MMP)-responsive properties for efficient drug delivery. The MNs are designed to deliver salicylic acid (SA) deep into the stratum corneum, softening the cuticle and creating microchannels. This process enables the antibacterial peptide FK13-a1 to penetrate through the stratum corneum barrier, facilitating intradermal diffusion and exerting antifungal and anti-inflammatory effects. In severe cases of tinea pedis, heightened local pH levels and MMP activity further accelerate drug release. Our research demonstrates that SA/FK13-a1@GelMA MNs are highly effective against Trichophyton mentagrophytes, Trichophyton rubrum, and Candida albicans. They also reduced stratum corneum thickness, fungal burden, and inflammation in a guinea pig model of tinea pedis induced by T. mentagrophytes. Furthermore, it was discovered that SA/FK13-a1@GelMA MNs exhibit excellent biocompatibility. These findings suggest that SA/FK13-a1@GelMA MNs have significant potential for the clinical treatment of tinea pedis as well as other fungal skin disorders.
Read full abstract