The field of computational drug repurposing aims to uncover novel therapeutic applications for existing drugs through high-throughput data analysis. However, there is a scarcity of drug repurposing methods leveraging the cellular-level information provided by single-cell RNA sequencing data. To address this need, we propose DrugReSC, an innovative approach to drug repurposing utilizing single-cell RNA sequencing data, intending to target specific cell subpopulations critical to disease pathology. DrugReSC constructs a drug-by-cell matrix representing the transcriptional relationships between individual cells and drugs and utilizes permutation-based methods to assess drug contributions to cellular phenotypic changes. We demonstrate DrugReSC's superior performance compared to existing drug repurposing methods based on bulk or single-cell RNA sequencing data across multiple cancer case studies. In summary, DrugReSC offers a novel perspective on the utilization of single-cell sequencing data in drug repurposing methods, contributing to the advancement of precision medicine for cancer.
Read full abstract