The current study investigates the steady two-dimensional (2D) hybrid nanofluid (Hnf) flow over an inclined permeable plate/cylinder. The Hnf flow has been examined in the context of mixed convection, heterogeneous/homogenous chemical reaction, and permeable medium. The Hnf is prepared by dispersing silver (Ag), and iron ferrite (Fe3O4) nanoparticles (NPs) in water. The current research is motivated by the increasing demand for highly efficient cooling devices in a variety of industries and energy-associated operations. The energy transmission and fluid flow are mathematically specified by using a coupled nonlinear system of partial differential equations (PDEs). The system of PDEs is simplified into a dimensionless form of ODEs, which are then further numerically treated with the MATLAB package based on the finite difference method (bvp4c). It has been noticed that the permeability component develops the heat transfer curve while decreasing the flow rate of the fluid. The impact of heat source/sink increases the energy profile. Moreover, the plate surface demonstrates the dominant behavior of energy transportation than a cylinder with the variance of Ag-Fe3O4-NPs.