Although permanent magnet couplings (PMCs) have been under research for many years and have found successful industrial applications, this is still a technology under development. Accurate parameter determination is of significance for performance analysis and critical decisions on PMC design. However, the determination can often lead to an unacceptable increase in computation, especially when the finite element (FE) method is used. The study aims to develop an FE model that is used for the structural design of a standard-disc type PMC for optimal torque. For the quick and accurate design, an integration optimal solution of the response surface methodology (RSM) and the Taguchi’s method was proposed. To verify the simulation, a series of experimental investigations were conducted on a self-developed testing platform. Furthermore, for a minimum set of FE analyses (FEA), a quantitative indicator called contribution rate, which can reflect effect level of structure parameters on the torque, was given based on the Taguchi method. Apart from this, the orthogonal matrix was used for the reduction of the FE calculation. Based on the contribution rate, the response surface methodology was adopted for the optimal torque determination with no increase in the PM volume. According to the optimization results, a fitting formula, which considers the contribution rates of the optimization variables, was presented. The results suggest that the FE simulations agree very well with the experiments, and the fitting formula can be used in the PMC design.