The article describes the selection of a permanent magnet synchronous machine design that could be implemented in a small wind turbine designed by the GUST student organization together with researchers working at the Technical University of Lodz. Based on measurements of the characteristics of available machines, eight initial designs of machines with different rotor designs were proposed. The size of the stator, the number of pairs of poles, and the dimensions of the magnets were used as initial parameters of the designed machines. The analysis was carried out about the K-index, the so-called index of benefits. The idea was to make the selected design as efficient as possible while keeping production costs and manufacturing time low. This paper describes how to select the best design of a permanent magnet synchronous generator intended to work with a small wind turbine. All generator parameters were selected keeping in mind the competition requirements, as the designed generator will be used in the author’s wind turbine. Based on the determined characteristics of the generator variants and the value of the K-index, a generator with a latent magnet rotor was selected as the best solution. The aforementioned K-index is a proprietary concept developed for the selection of the most suitable generator design. This paper did not use optimization methods; the analysis was only supported by the K-index.