Network pharmacology was employed to probe into the mechanism of Fushen Granules in treating peritoneal dialysis-rela-ted peritonitis(PDRP) in rats. The main active components of Fushen Granules were searched against the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, and their targets were predicted. PDRP-related targets were retrieved from DisGeNET and other databases. The common targets shared by the drug and the disease were identified by the online tool, and protein-protein interaction(PPI) network of the common targets. The obtained 276 common targets were imported into DAVID for GO function enrichment and KEGG pathway enrichment. The main signaling pathway of Fushen Granules in the treatment of PDRP was predicted as Toll-like receptor 4(TLR4)/nuclear factor(NF)-κB. The rat model of uremia was induced by 5/6 nephrectomy. From two weeks after operation, the rat model of peritoneal dialysis(PD) was established by intraperitoneal injection of 20 mL dialysate with 1.25% glucose every day. The sham operation group and model group received 2 mL normal saline by gavage every day. The rats in Fushen Gra-nules groups were administrated with 2 mL solutions of low-(0.54 g·kg~(-1)), medium-(1.08 g·kg~(-1)) and high-dose(2.16 g·kg~(-1)) Fushen Granules every day. The bifico group received 2 mL(113.4 mg·kg~(-1)) of bifico solution every day. At the end of the 8th week, the levels of serum creatinine(Scr) and blood urea nitrogen(BUN) in each group were measured. The serum levels of hypersensitive C reactive protein(hs-CRP), tumor necrosis factor(TNF)-α, and interleukin(IL)-6 were measured, and the pathological changes in the colon tissue were observed by hematoxylin-eosin(HE) staining. The serum levels of lipopolysaccharide(LPS) and lipopolysaccharide-binding protein(LBP) of rats were measured, and the expression levels of LBP, TLR4, NF-κB p65, inhibitor of κB kinase α(IκBα), TNF-α, and IL-1β in the colon tissue were determined. Compared with sham operation group, the model group had abnormal structure of all layers of colon tissue, sparse and shorter intestinal villi, visible edema in mucosal layer, wider gap, obvious local inflammatory cell infiltration, significantly decreased body weight(P<0.01), and significantly increased kidney function index(Scr, BUN) content(P<0.01). Serum levels of inflammatory cytokines(hs-CRP, TNF-α, IL-6), LPS and LBP were significantly increased(P<0.01), protein expressions of LBP, TLR4, NF-κB p65, TNF-α and IL-1β were significantly increased(P<0.01), and protein expressions of IκBα were significantly decreased(P<0.01). Compared with model group, intestinal villi damage in colonic tissue of rats in low-, medium-and high-dose Fushen Granules groups and bifico group were alleviated to different degrees, edema in submucosa was alleviated, space was narrowed, and inflammatory cell infiltration in lamina propria was reduced. The contents of renal function index(Scr, BUN) and serum inflammatory factors(hs-CRP, TNF-α, IL-6) were significantly decreased(P<0.05 or P<0.01) in medium-and high-dose Fushen Granules groups and bifico group(P<0.05 or P<0.01). Serum LPS and LBP contents in Fushen Granules group and bifico group were significantly decreased(P<0.01), protein expressions of LBP, TLR4, NF-κB p65, TNF-α and IL-1β in Fushen Granules group were significantly decreased(P<0.05 or P<0.01), and protein expressions of IκBα were significantly increased(P<0.01). The expression of LBP protein in bifico group was significantly decreased(P<0.01). The results suggest that Fushen Granules can protect the residual renal function of PD rats, reduce the inflammatory response, and protect the colon tissue. Based on network pharmacology, TLR4/NF-κB pathway may be the main signaling pathway of Fushen granule in the treatment of PDRP. The results showed that Fushen Granules could improve intestinal inflammation and protect intestinal barrier to prevent PDRP by regulating the expression of key factors in TLR4/NF-κB pathway in colon of PD rats.
Read full abstract