In this paper we investigate the following fractional order in time integrodifferential problem Dtαu(t)+Au(t)=f(t,u(t))+∫−∞tk(t−s)g(s,u(s))ds,t∈R.\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathbb{D}_{t}^{\\alpha}u(t)+Au(t)=f \\bigl(t,u(t) \\bigr)+ \\int _{-\\infty}^{t} k(t-s)g \\bigl(s,u(s) \\bigr)\\,ds, \\quad t \\in \\mathbb{R}. $$\\end{document} Here, mathbb{D}_{t}^{alpha} is the Caputo derivative. We obtain results on the existence and uniqueness of (omega ,c)-periodic mild solutions assuming that −A generates an analytic semigroup on a Banach space X and f, g, and k satisfy suitable conditions. Finally, an interesting example that fits our framework is given.
Read full abstract