Unmanned aerial vehicles (UAVs) are utilized to improve the performance of wireless communication networks (WCNs), notably, in the context of Internet-of-things (IoT). However, the application of UAVs, as active aerial base stations (BSs)/relays, is questionable in the fifth-generation (5G) WCNs with quasi-optic millimeter wave (mmWave) and beyond in 6G (visible light) WCNs. Because path loss is high in 5G/6G networks that attenuate, even, the line-of-sight (LoS) communicating signals propagated by UAVs. Besides, the limited energy/size/weight of UAVs makes it cost-deficient to design aerial multi-input/output BSs for active beamforming to strengthen the signals. Equipping UAVs with the reconfigurable intelligent surface (RIS), a passive component, can help to address the problems with UAV-assisted communication in 5G and optical 6G networks. We propose adopting the RIS-equipped UAV (RISeUAV) to provide aerial LoS service and facilitate communication for mobile Internet-of-vehicles (IoVs) in an obstructed dense urban area covered by 5G/6G. RISeUAV-aided wireless communication facilitates vehicle-to-vehicle/everything communication for IoVs for updating IoT information required for sensor fusion and autonomous driving. However, autonomous navigation of RISeUAV for this purpose is a multilateral problem and is computationally challenging for being optimally implemented in real-time. We intelligently automated RISeUAV navigation using deep reinforcement learning to address the optimality and time complexity issues. Simulation results show the effectiveness of the method.
Read full abstract