Spatial and temporal inhomogeneities in temperature and wind velocity affect sound propagation resulting in amplitude and phase fluctuations called scintillations. A computationally efficient method is presented to generate sequences of scintillations. The method, already used in the field of wireless communication to predict the performance of wireless communication links, could be used in the field of acoustics to create more perceptually valid auralizations. A Gaussian spectrum and a spherical wavefront is considered, but the method can also be used in combination with other spectra like the Von Karman spectrum as well as plane waves. Two examples are given, one is a pure tone affected by the scintillations and the other is an auralization of an aircraft fly-over. The effect of the transverse speed of the source is demonstrated as well.
Read full abstract