This paper focuses on boosting the performance of small cell networks (SCNs) by integrating multiple-input multiple-output (MIMO) and nonorthogonal multiple access (NOMA) in consideration of imperfect channel-state information (CSI). The estimation error and the spatial randomness of base stations (BSs) are characterized by using Kronecker model and Poisson point process (PPP), respectively. The outage probabilities of MIMO-NOMA enhanced SCNs are first derived in closed-form by taking into account two grouping policies, including random grouping and distance-based grouping. It is revealed that the average outage probabilities are irrelevant to the intensity of BSs in the interference-limited regime, while the outage performance deteriorates if the intensity is sufficiently low. Besides, as the channel uncertainty lessens, the asymptotic analyses manifest that the target rates must be restricted up to a bound to achieve an arbitrarily low outage probability in the absence of the inter-cell interference. Moreover, highly correlated estimation error ameliorates the outage performance under a low quality of CSI, otherwise it behaves oppositely. Afterwards, the goodput is maximized by choosing appropriate precoding matrix, receiver filters and transmission rates. In the end, the numerical results verify our analysis and corroborate the superiority of our proposed algorithm.
Read full abstract