Background/Objectives: Subthalamic nucleus deep brain stimulation (STN-DBS) is a standard treatment for motor complications in Parkinson's disease (PD). Its impact on axial symptoms is still not fully understood. This study aimed to quantitatively evaluate the effect of frequency changes within the therapeutic window on postural control performances of individuals with PD who underwent bilateral STN-DBS. Methods: Postural control was assessed using Computerized Dynamic Posturography with randomized DBS frequency parameters, low (60 Hz), high (130 Hz), and very high (180 Hz), across six sensory organization test (SOT) conditions. Results: Twenty PD participants with a mean age of 61.2 ± 10.1 years were included. There were no differences in equilibrium scores of SOT conditions between 60, 130, and 180 Hz frequencies (p > 0.05), except the SOT6 score (p = 0.003), where 60 Hz showed better equilibrium performance in SOT6, indicating an advantage in postural control when visual cues are disturbed. Discussion: Low-frequency settings (60 Hz) in STN-DBS may benefit those who rely heavily on visual cues while ineffectively using somatosensory and vestibular inputs. Conclusions: A tailored approach to the DBS frequency setting could optimize postural stability and reduce fall risk in these patients. Future research is needed to explore these mechanisms to enhance therapeutic strategies.
Read full abstract