Sparse recovery space–time adaptive processing (SR-STAP) technology improves the moving target detection performance of airborne radar. However, the sparse recovery method with a fixed dictionary usually leads to an off-grid effect. This paper proposes a STAP algorithm for airborne radar based on dictionary and clutter power spectrum joint correction (DCPSJC-STAP). The algorithm first performs nonlinear regression in a non-stationary clutter environment with unknown yaw angles, and it corrects the corresponding dictionary for each snapshot by updating the clutter ridge parameters. Then, the corrected dictionary is combined with the sparse Bayesian learning algorithm to iteratively update the required hyperparameters, which are used to correct the clutter power spectrum and estimate the clutter covariance matrix. The proposed algorithm can effectively overcome the off-grid effect and improve the moving target detection performance of airborne radar in actual complex clutter environments. Simulation experiments verified the effectiveness of this algorithm in improving clutter estimation accuracy and moving target detection performance.