Black-to-transparent electrochromism is hailed as the holy grail of organic optoelectronics. Despite its potential, designing black electrochromic materials that fully absorb visible light remains a significant challenge. Electroactive materials that simultaneously possess excellent cyclic stability, fast switching times, and high coloration efficiency are rare. In this study, we successfully designed copolymers that fully absorb the entire visible spectrum byjudiciously selecting four types of monomers. We incorporated two types of polar side chains to synergistically enhance the ionic conductivity of the copolymers, thus improving the performance of electrochromic devices. Among these electrochromic devices, the P2-a device exhibits cycling stability exceeding 105 cycles, and the P2-c device demonstrates a coloring/ bleaching time of 0.82 s/0.86 s and achieves a coloration efficiency of 1078 cm²/C. This study proposes a strategy for designing and synthesizing high-performance black electrochromic copolymers.