Nowadays, axial fans participate in the most important areas of industry and research, including aviation, navy, wind tunnels, cooling towers, and even automobiles. Thus, more emphasis has been placed on improving their aerodynamic performances. It is important to notice that the parameters involved in designing a fan are mainly concerned with aeraulic power, torque and efficiency. This study investigates the utilization of flow control techniques to improve performances of an axial fan equipped with hollow blades, shroud, and hub. These features grant the fan crucial characteristics, namely, its lightweight and facilitate the blowing action by taking advantage on its hollow parts. The fan's performance is evaluated using a steady RANS numerical model with a k-ω SST turbulence closure, which was validated with experimental data. An active control air blowing through a slot was introduced with various positions and dimensions. The results demonstrate a significant improvement in the fan's performance, with an up to 56% increase in aeraulic power gain, accompanied by changes in the overall flow topology, noticed by closely analyzing the flow structure near the tip clearance.