To address the performance and computational complexity issues in speech enhancement for hearing aids, a speech enhancement algorithm based on a microphone array and a lightweight two-stage convolutional recurrent network (CRN) is proposed. The algorithm consists of two main modules: a beamforming module and a post-filtering module. The beamforming module utilizes directional features and a complex time-frequency long short-term memory (CFT-LSTM) network to extract local representations and perform spatial filtering. The post-filtering module uses analogous encoding and two symmetric decoding structures, with stacked CFT-LSTM blocks in between. It further reduces residual noise and improves filtering performance by passing spatial information through an inter-channel masking module. Experimental results show that this algorithm outperforms existing methods on the generated hearing aid dataset and the CHIME-3 dataset, with fewer parameters and lower model complexity, making it suitable for hearing aid scenarios with limited computational resources.
Read full abstract