AbstractThis research work investigates how different dimple designs affect the flow field and thermal performance of three‐dimensional pipes. The study focuses on the effect of the number of improved dimples NOD (3, 4, and 5), different groups numbers DGNs (1, 2, and 3 groups), arranged around the pipe, and different distances between dimples (DBDs). Dimple geometry affects flow: Changing dimple parameters alters the velocity and pressure distribution within the pipe. Performance evaluation factor (PEF) varies with dimple configuration: The PEF, which balances heat transfer enhancement and pressure drop penalty, ranges from 1.187 to 1.23 for NOD and from 1.292 to 1.31 for DGN, and also from 1.26 to 1.302 for DBD. Reynolds number range, Re = 4000–15,000; turbulence model, standard k–ε model; numerical scheme, second‐order upwind scheme; test tube conditions, inlet temperature (Tin) = 25°C; pipe diameter D = 23 mm; thickness = 2 mm; heat flux q = 25,500 W/m²; and material (Cu). This research focuses on improving heat transfer efficiency in pipes using dimples. Dimple size and arrangement significantly impact flow dynamics and heat transfer. PEF is used to evaluate the overall performance considering both heat transfer improvement and pressure drop penalty. The study found a specific range for PEF under various conditions for different dimple configurations. The average enhancement in Nusselt number for model 2 was 15.16% compared with a smooth pipe and the heat transfer performance by 10.028%–28.963% at the effect of NOD, the DGN has slightly higher Nu values than smooth pipes, indicating improved heat transfer due to the dimples (around 7%–58% at Re 4000–15,000 and 9%–13% at Re 12,000), and at DBD (13.5%) at a Reynolds number of 12,000 and 4.6%–59% at Re 4000–15,000.
Read full abstract