BackgroundAs an emerging technology in robot-assisted (RA) surgery, the potential benefits of its application in transforaminal lumbar interbody fusion (TLIF) lack substantial support from current evidence.ObjectiveWe aimed to investigate whether the RA TLIF is superior to FG TLIF in the treatment of lumbar degenerative disease.MethodsWe systematically reviewed studies comparing RA versus FG TLIF for lumbar degenerative diseases through July 2022 by searching PubMed, Embase, Web of Science, CINAHL (EBSCO), Chinese National Knowledge Infrastructure (CNKI), WanFang, VIP, and the Cochrane Library, as well as the references of published review articles. Both cohort studies (CSs) and randomized controlled trials (RCTs) were included. Evaluation criteria included the accuracy of percutaneous pedicle screw placement, proximal facet joint violation (FJV), radiation exposure, duration of surgery, estimated blood loss (EBL), and surgical revision. Methodological quality was assessed using the Cochrane risk of bias and ROBINS-I Tool. Random-effects models were used, and the standardized mean difference (SMD) was employed as the effect measure. We conducted subgroup analyses based on surgical type, the specific robot system used, and the study design. Two investigators independently screened abstracts and full-text articles, and the certainty of evidence was graded using the GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach.ResultsOur search identified 539 articles, of which 21 met the inclusion criteria for quantitative analysis. Meta-analysis revealed that RA had 1.03-folds higher “clinically acceptable” accuracy than FG (RR: 1.0382, 95% CI: 1.0273–1.0493). And RA had 1.12-folds higher “perfect” accuracy than FG group (RR: 1.1167, 95% CI: 1.0726–1.1626). In the case of proximal FJV, our results indicate a 74% reduction in occurrences for patients undergoing RA pedicle screw placement compared to those in the FG group (RR: 0.2606, 95%CI: 0.2063- 0.3293). Seventeen CSs and two RCTs reported the duration of time. The results of CSs suggest that there is no significant difference between RA and FG group (SMD: 0.1111, 95%CI: -0.391–0.6131), but the results of RCTs suggest that the patients who underwent RA-TLIF need more surgery time than FG (SMD: 3.7213, 95%CI: 3.0756–4.3669). Sixteen CSs and two RCTs reported the EBL. The results suggest that the patients who underwent RA pedicle screw placement had fewer EBL than FG group (CSs: SMD: -1.9151, 95%CI: -3.1265–0.7036, RCTs: SMD: -5.9010, 95%CI: -8.7238–3.0782). For radiation exposure, the results of CSs suggest that there is no significant difference in radiation time between RA and FG group (SMD: -0.5256, 95%CI: -1.4357–0.3845), but the patients who underwent RA pedicle screw placement had fewer radiation dose than FG group (SMD: -2.2682, 95%CI: -3.1953–1.3411). And four CSs and one RCT reported the number of revision case. The results of CSs suggest that there is no significant difference in the number of revision case between RA and FG group (RR: 0.4087,95% CI 0.1592–1.0495). Our findings are limited by the residual heterogeneity of the included studies, which may limit the interpretation of the results.ConclusionIn TLIF, RA technology exhibits enhanced precision in pedicle screw placement when compared to FG methods. This accuracy contributes to advantages such as the protection of adjacent facet joints and reductions in intraoperative radiation dosage and blood loss. However, the longer preoperative preparation time associated with RA procedures results in comparable surgical duration and radiation time to FG techniques. Presently, FG screw placement remains the predominant approach, with clinical surgeons possessing greater proficiency in its application. Consequently, the integration of RA into TLIF surgery may not be considered the optimal choice.Systematic review registrationPROSPERO CRD42023441600.
Read full abstract