Fearful, angry, and disgusted facial expressions are evolutionarily salient and convey different types of threat signals. However, it remains unclear whether these three expressions impact sensory perception and attention in the same way. The present ERP study investigated the temporal dynamics underlying the processing of different types of threatening faces and the impact of attentional resources employed during a perceptual load task. Participants were asked to judge the length of bars superimposed over faces presented in the center of the screen. A mass univariate statistical approach was used to analyze the EEG data. Behaviorally, task accuracy was significantly reduced following exposure to fearful faces relative to neutral distractors, independent of perceptual load. The ERP results revealed that the P1 amplitude over the right hemisphere was found to be enhanced for fearful relative to disgusted faces, reflecting the rapid and coarse detection of fearful cues. The N170 responses elicited by fearful, angry, and disgusted faces were larger than those elicited by neutral faces, suggesting the largely automatic and preferential processing of threats. Furthermore, the early posterior negativity (EPN) component yielded increased responses to fearful and angry faces, indicating prioritized attention to stimuli representing acute threats. Additionally, perceptual load exerted a pronounced influence on the EPN and late positive potential (LPP), with larger responses observed in the low perceptual load condition, indicating goal-directed cognitive processing. Overall, the early sensory processing of fearful, angry, and disgusted faces is characterized by differential sensitivity in capturing attention automatically, despite the importance of these facial signals for survival. Fearful faces produce a strong interference effect and are processed with higher priority than angry and disgusted ones.