Two-frame kinematograms have been extensively used to study motion perception in human vision. Measurements of the direction-discrimination performance limits (Dmax) have been the primary subject of such studies, whereas surprisingly little research has asked how the variability in the spatial frequency content of individual frames affects motion processing. Here, we used two-frame one-dimensional vertical pink noise kinematograms, in which images in both frames were bandpass filtered, with the central spatial frequency of the filter manipulated independently for each image. To avoid spatial aliasing, there was no actual leftward-rightward shift of the image: instead, the phases of all Fourier components of the second image were shifted by ±¼ wavelength with respect to those of the first. We recorded ocular-following responses (OFRs) and perceptual direction discrimination in human subjects. OFRs were in the direction of the Fourier components' shift and showed a smooth decline in amplitude, well fit by Gaussian functions, as the difference between the central spatial frequencies of the first and second images increased. In sharp contrast, 100% correct perceptual direction-discrimination performance was observed when the difference between the central spatial frequencies of the first and second images was small, deteriorating rapidly to chance when increased further. Perceptual dependencies moved closer to the OFR ones when subjects were allowed to grade the strength of perceived motion. Response asymmetries common for perceptual judgments and the OFRs suggest that they rely on the same early visual processing mechanisms. The OFR data were quantitatively well described by a model which combined two factors: (1) an excitatory drive determined by a power law sum of stimulus Fourier components' contributions, scaled by (2) a contrast normalization mechanism. Thus, in addition to traditional studies relying on perceptual reports, the OFRs represent a valuable behavioral tool for studying early motion processing on a fine scale.
Read full abstract