Low-dose computed tomography (LDCT) scans are essential in reducing radiation exposure but often suffer from significant image noise that can impair diagnostic accuracy. While deep learning approaches have enhanced LDCT denoising capabilities, the predominant reliance on objective metrics like PSNR and SSIM has resulted in over-smoothed images that lack critical detail. This paper explores advanced deep learning methods tailored specifically to improve perceptual quality in LDCT images, focusing on generating diagnostic-quality images preferred in clinical practice. We review and compare current methodologies, including perceptual loss functions and generative adversarial networks, addressing the significant limitations of current benchmarks and the subjective nature of perceptual quality evaluation. Through a systematic analysis, this study underscores the urgent need for developing methods that balance both perceptual and diagnostic quality, proposing new directions for future research in the field.