To observe the effect of acupotomy on mitophagy mediated by PINK1/Parkin pathway in cartilage of rabbits with knee osteoarthritis (KOA), so as to explore its mechanism in inhibiting cartilage damage. Twenty-one New Zealand rabbits were randomly divided into normal, model, and acupotomy groups, with 7 rabbits in each group. The KOA rabbit model was established by using the Videman method. Rabbits in the acupotomy group received regular acupotomy treatment around the knee joint nodules or tendons once a week for 3 consecutive weeks. HE staining and transmission electron microscopy were used to observe the morphological and ultrastructural changes in knee joint cartilage of rabbits. Flow cytometry was used to measure the mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) average fluorescence intensity in chondrocytes. Immunofluorescence was performed to detect the fluorescence intensity of LC3B, PINK1 and Parkin in cartilage tissue. Western blot was conducted to measure the protein expression levels of p62, LC3Ⅱ/Ⅰ, PINK1, and Parkin in cartilage tissue. Compared to the normal group, the model group showed fissures and tissue fibrosis on the surface of rabbit knee joint cartilages, loose distribution of chondrocytes, decreased autophagosomes, and abnormal mitochondrial morphology. The fluorescence intensity of LC3B, PINK1 and Parkin, the expression levels of LC3Ⅱ/Ⅰ, PINK1 and Parkin proteins in cartilage tissue were significantly decreased (P<0.01), while the percentage of chondrocytes with low Δψm, the average fluorescence intensity of ROS, and the expression of p62 protein in cartilage tissue were significantly increased (P<0.01). Compared to the model group, the acupotomy group showed no obvious defects on the surface of rabbit knee joint cartilage, relatively dense distribution of chondrocytes, increased autophagosomes, and relatively normal mitochondrial morphology. The fluorescence intensity of LC3B, PINK1 and Parkin, the expression of LC3Ⅱ/Ⅰ, PINK1 and Parkin proteins in cartilage tissue were significantly increased (P<0.01, P<0.05), while the percentage of chondrocytes with low Δψm, the average fluorescence intensity of ROS, and the expression of p62 protein in cartilage tissue were significantly decreased (P<0.01). Acupotomy may promote mitophagy by regulating the PINK1/Parkin pathway, thereby improving cartilage damage in rabbits with KOA.