The antimicrobial peptide produced by Bacillus velesensis P34 has a broad activity against Gram-positive bacteria, showing potential as natural food preservative. In this work, nanocapsules (NCs) containing the peptide P34 were produced using the polymers poly-ε-caprolactone (PCL) or Eudragit RS-100 (EUD), and their antimicrobial activities were assessed evaluating L. monocytogenes growth in synthetic media, milk and isolated milk proteins. As results, cationic and anionic nanocapsules were obtained, with zeta potential ranging from +15 to +28 mV for EUD and around −19 mV for PCL, and average diameter in the range of 104–130 nm and 224–245 nm, respectively. In the antimicrobial tests, only the P34-EUD NCs presented activity against L. monocytogenes in BHI broth, possibly due to the EUD high swelling and permeability properties, as compared with PCL. In whole and skimmed milk, the P34-EUD NCs caused no inhibition of L. monocytogenes growth, due to a possible interaction of casein proteins with the NCs surface resulting in protein corona formation, which interfered with the antimicrobial peptide release. Therefore, the application of polymeric NCs as antimicrobial delivery systems in foods could be limited by the polymer type, and the adhesion of specific matrix proteins that could form protein corona, reducing the bioactive compound release.
Read full abstract