Abstract Although treatable with antiretroviral therapy, HIV infection persists in people living with HIV (PLWH). It is well known that the HIV virus finds refuge in places for which antiretroviral medications do not reach therapeutic levels, mainly the CNS. It is clear that as PLWH age, the likelihood of developing HIV-associated neurological deficits increases. At the biochemical level neurological dysfunction is the manifestation of altered cellular function and ineffective intercellular communication. In this review, we examine how intercellular signaling in the brain is disrupted in the context of HIV. Specifically, the concept of how the blood-brain barrier can be a convergence point for crosstalk, is explored. Crosstalk between the cells of the neurovascular unit (NVU) (endothelium, pericytes, astrocytes, microglia and neurons) is critical for maintaining proper brain function. In fact, the NVU allows for rapid matching of neuronal metabolic needs, regulation of blood-brain barrier (BBB) dynamics for nutrient transport and changes to the level of immunosurveillance. This review invites the reader to conceptually consider the BBB as a router or convergence point for NVU crosstalk, to facilitate a better understanding of the intricate signaling events that underpin the function of the NVU during HIV associated neuropathology.
Read full abstract