Star polymers have been gaining interest due to their tunable properties. They have been used as effective stabilizers for Pickering emulsions. Herein, star polymers were synthesized via activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP). Poly(ethylene oxide) (PEO) with terminal α-bromoisobutyrate ATRP functionality was used as a macroinitiator and divinylbenzene as a crosslinker for the arm-first star synthesis. Stars with PEO arms with a molar mass of either 2 or 5 kDa had a relatively low density of grafted chains, i.e., ca. 0.25 chain/nm2. The properties of PEO stars adsorbed at oil-water interfaces were investigated using interfacial tension and interfacial rheology. The magnitude of interfacial tensions at oil-water interfaces depends on the nature of the oil phase, being lower at the m-xylene/water interface than at the n-dodecane/water interface. Small differences were observed for stars with different molecular weights of PEO arms. The overall behavior of PEO stars adsorbed at an interface can be considered as an intermediate between a particle and a linear/branched polymer. Obtained results offer an important insight into the interfacial rheology of PEO star polymers in the context of their application as stabilizers for Pickering emulsions.
Read full abstract