In the ongoing fight against bacterial resistance to antibiotics, this study focuses on synthesizing and evaluating 1,2,4-triazole derivatives to explore their potential as new antibacterial agents. 1,2,4-Triazole compounds are promising drug candidates with a wide range of therapeutic effects, including pain relief, antiseptic, antimicrobial, antioxidant, antiurease, anti-inflammatory, diuretic, anticancer, anticonvulsant, antidiabetic, and antimigraine properties. The structures of all the synthesized compounds were identified using their physicochemical properties and spectral techniques, such as IR and NMR. These compounds were then evaluated in molecular docking studies against antimicrobial activity in vitro and further supported by molecular dynamics studies. Compound 7, featuring a 6-chloro group on the phenyl ring, emerged as the most effective against Gram-positive S. aureus compared to the standard antibiotic ciprofloxacin. Docking studies revealed high and comparable affinities for all ten ligands, with compounds 4 and 6 showing the best-docked activity against Penicillin Acylase mutants. Further, compounds 6 and 10 displayed significant affinity against D-alanine-D-alanine ligase (DDL) from Yersinia pestis during 100 ns MD simulation. Notably, compound 7 demonstrated the highest binding score to the 5C1P protein, suggesting its potential as a lead molecule for the development of potent and safer antimicrobial agents. This research contributes valuable insights into addressing the escalating challenge of bacterial resistance.
Read full abstract