ObjectiveTo investigate the clinical significance of using 3D printing guides in modified unilateral puncture percutaneous vertebroplasty (PVP) for the treatment of osteoporotic vertebral compression fractures (OVCF), and to explore a new method for preventing paravertebral vein leakage during PVP in conjunction with a previous study of the optimal puncture-side bone cement/vertebral volume ratio(PSBCV/VV%).MethodsThis retrospective study analyzed 99 patients who underwent unilateral puncture PVP between January 2023 and December 2023. Patients were divided into a guide plate group (46 patients) and a conventional group (53 patients). The guide plate group underwent modified unilateral puncture PVP with the guidance of 3D printing guides, while the conventional group underwent unilateral puncture PVP using the conventional pedicle approach. The distribution of bone cement, surgical outcomes, and the occurrence of cement leakage into paravertebral veins were observed in both groups.ResultsThe guide plate group had significantly shorter operating time and required fewer fluoroscopies compared to the conventional group. The amount of bone cement volume (BCV) used in the guide plate group was higher, but the amount of bone cement volume on the puncture side(PSBCV), the PSBCV/VV%, and the rate of paravertebral vein leakage were lower in the guide plate group compared to the conventional group (P < 0.05). Within each group, significant improvements in anterior vertebral margin height, Cobb angle, visual analog scale (VAS) score, and Oswestry Disability Index (ODI) were observed at 1 day and 1 month postoperatively compared to preoperative values (P < 0.05).ConclusionUsing 3D printing guides in modified unilateral puncture PVP is a safe and effective method for treating OVCF. And it has the advantages of short operation time, less fluoroscopy, even distribution of bone cement, and a low rate of paravertebral vein leakage.
Read full abstract