Language dominance in the developing brain can vary widely across anatomical and pathological conditions as well as age groups. Repetitive navigated transcranial magnetic stimulation (rnTMS) has been applied to calculate the hemispheric dominance ratio (HDR) in adults. In this study, the authors aimed to assess the feasibility of using rnTMS to identify language lateralization in a pediatric neurosurgical cohort and to correlate the preoperative rnTMS findings with the postoperative language outcome. A consecutive prospectively collected cohort of 19 children with language-associated lesions underwent bihemispheric rnTMS mapping prior to surgery (100 stimulation sites on each hemisphere). In addition to feasibility and adverse effects, the HDR (ratio of the left hemisphere to right hemisphere error rate) was calculated. The anatomical surgical site and postoperative language outcome at 3 months after surgery were assessed according to clinical documentation. Repetitive nTMS mapping was feasible in all 19 children (mean age 12.5 years, range 4-17 years; 16 left-sided lesions) without any relevant adverse events. Thirteen children (68%) showed left hemispheric dominance (HDR > 1.1), and 2 children (11%) showed right hemispheric dominance (HDR < 0.9). In 4 children (21%), the bihemispheric error rates were nearly the same (HDR ≥ 0.9 and ≤ 1.1). Sixteen children underwent surgery (14 tumor/lesion resections and 2 hemispherotomies) and 3 patients continued conservative therapy. After surgery, 4 patients (25%) showed an improvement in language function, 10 (63%) presented with stable language function, and 2 (12.5%) experienced deterioration in language function. Of the 6 patients with right hemispheric language involvement, 4 (80%) had glial tumors, 1 (20%) had focal cortical dysplasia, and 1 (20%) experienced hypoxic brain injury. Children with right hemispheric language involvement (HDR ≤ 1.1) did not show any language deterioration postoperatively. Bihemispheric rnTMS language mapping as a noninvasive mapping technique to assess lateralization of language function in the pediatric neurosurgical population is safe and feasible. Why relevant right hemispheric language function (HDR ≤ 1.1) was associated with postoperative unaltered language function needs to be validated in future studies. Bihemispheric rnTMS language mapping strengthens risk-benefit considerations prior to pediatric tumor/epilepsy surgery in language-associated areas.