Thiopurine drugs are effective treatment options in inflammatory bowel disease and other conditions but discontinued in some patients due to toxicity. We investigated thiopurine-induced toxicity in a pediatric inflammatory bowel disease cohort by utilizing exome sequencing data across a panel of 46 genes, including TPMT and NUDT15. The cohort included 487 patients with a median age of 13.1 years. Of the 396 patients exposed to thiopurines, myelosuppression was observed in 11%, gastroenterological intolerance in 11%, hepatotoxicity in 4.5%, pancreatitis in 1.8%, and "other" adverse effects in 2.8%. TPMT (thiopurine S-methyltransferase) enzyme activity was normal in 87.4%, intermediate 12.3%, and deficient in 0.2%; 26% of patients with intermediate activity developed toxicity to thiopurines. Routinely genotyped TPMT alleles associated with defective enzyme activity were identified in 28 (7%) patients: TPMT*3A in 4.5%, *3B in 1%, and *3C in 1.5%. Of these, only 6 (21%) patients developed toxic responses. Three rare TPMT alleles (*3D, *39, and *40) not assessed on routine genotyping were identified in 3 patients, who all developed toxic responses. The missense variant p.R139C (NUDT15*3 allele) was identified in 4 patients (azathioprine 1.6mg/kg/d), but only 1 developed toxicity. One patient with an in-frame deletion variant p.G13del in NUDT15 developed myelosuppression at low doses. Per-gene deleteriousness score GenePy identified a significant association for toxicity in the AOX1 and DHFR genes. A significant association for toxicity was observed in the AOX1 and DHFR genes in individuals negative for the TPMT and NUDT15 variants. Patients harboring the NUDT15*3 allele, which is associated with myelosuppression, did not show an increased risk of toxicity.
Read full abstract