Studies of macroscopic speed modeling of bidirectional pedestrian cross-flows have relied heavily on scenario experiments, but the data itself may be deficient because large-scale scenario experiments are not easy to organize and subjects may not be walking under normal conditions. In order to explore the possibility of using microscopic pedestrian flow simulations for macroscopic speed modeling of pedestrian flows, a series of two-way pedestrian cross-flow simulation experiments were designed. Bidirectional pedestrian flows are defined as Peds1 and Peds2. The crossing angle and pedestrian flow rate are used as variables, and a bidirectional pedestrian flows simulation is designed as an orthogonal experiment. The crossing angles range from 15 to 165 degrees, and bidirectional pedestrian flow rate range from 1 ped/s to 8 ped/s. A series of simulations are built and performed on the GIS agent-based modeling architecture (GAMA) platform. By analyzing the flow data of bidirectional flows in the crossing area, it is found that when the Peds1 density falls below a threshold, Peds1 speed is determined by pedestrians themselves and mainly remains in a free flow state; otherwise, the Peds1 speed decreases with density. The clear effects such as Peds2 density on the Peds1 speed cannot be determined. A piecewise function combined with a linear function and an exponential function is constructed as the Peds1 speed model considering the influence of the crossing angle. The calibration results show that the piecewise function should be better than the non-piecewise function. Compared to the results of established studies, the results in this paper have some differences. Therefore, the simulation method cannot completely replace the scene experiments. However, this approach can provide suggestions for subsequent refinement of the experimental program, as well as a feasible direction for the construction of a speed relationship for bidirectional pedestrian flows.