We construct gray soliton configurations, which move at constant speeds, in holographic superfluids for the first time. Since there should be no dissipation for a moving soliton to exist, we use the simplest holographic superfluid model at zero temperature, considering both the standard and alternative quantizations. For comparison purpose, we first investigate black solitons in the zero temperature holographic superfluids, which are static configurations. Then we focus on the numerical construction of gray solitons under both quantizations, which interpolate between the (static) black solitons and sound waves (moving at the speed of sound). Interestingly, under the standard quantization, a peculiar oscillation of the soliton configurations is observed, very much resembling the Friedel oscillation in fermionic superfluids at the BCS regime. Some implications and other aspects of the soliton configurations are also discussed.
Read full abstract